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ARTICLE INFO ABSTRACT

Keywords: Changes in electromyographic (EMG) parameters are used to evaluate timing, amplitude, and fatigue of
IEMG muscle actions during movement. Little published data describe the reliability and precision of multiple
RMS, EMG parameters, how these parameters compare to one another, and how these parameters vary
%(e:d'an power frequency between muscles. The purpose of this study was to determine the reliability and precision of four EMG
SEM parameters recorded from the legs, torso, and arm muscles during running. Fifteen well-trained male

runners performed moderate-intensity treadmill running while EMG data were collected from thirteen
muscles. Integrated EMG (iEMG), root mean square EMG (RMS), maximum M-wave, and median power
frequency (MPF) were calculated for 25 consecutive strides. Intra-class correlation coefficients (ICC) and
standard error of measurement (SEM) for each parameter were calculated for each muscle. Seven muscles
displayed good reliability (ICC > 0.80) for all parameters studied. MPF was the most reliable variable, with
12 muscles having ICC > 0.80 and <6% normalized SEM. Reliability and precision differed between mus-
cles of similar function and anatomic region. These data emphasize the need for researchers and clini-
cians to have reliability and precision measures for all parameters of each muscle, and demonstrates

that generalizations must be used cautiously when interpreting EMG data collected during running.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Running is a popular activity that is enjoyed by people from all
walks of life, from recreational fitness enthusiasts through profes-
sional athletes. Its widespread popularity is reflected in the litera-
ture, where numerous studies have examined causes of running
injuries and performance limitations. Electromyography (EMG) is
often used to study running physiology (Borrani et al., 2001; Hanon
et al., 2005; Taylor and Bronks, 1994) and biomechanics (Anders-
son et al., 1997; Mann et al., 1986; Montgomery et al., 1994; Wank
et al,, 1998). Within-subject changes in EMG parameters for a gi-
ven muscle have been used to quantify neuromuscular fatigue dur-
ing running (Hanon et al., 1998, 2005; Mizarhi et al., 2000) and also
describe the relationship between neuromuscular and metabolic
factors (Borrani et al., 2001; Bouissou et al., 1989; Taylor and Bron-
ks, 1994).

Raw EMG data can be processed in a number of ways to com-
pute a variety of parameters to quantify the neuromuscular status
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of a given muscle. In the time domain, changes in integrated elec-
tromyography (iEMG), root mean square (RMS), and maximum M-
wave amplitude have all been described in the literature (Dimitr-
ova and Dimitrov, 2003). In the frequency domain, median power
frequency (MPF) is commonly used for evaluating fatigue (Ament
et al., 1996). Though changes in a single EMG parameter are often
reported (Borrani et al., 2001; Bouissou et al., 1989; Paavolainen
et al., 1999), the relationship between changes in multiple param-
eters (Mizarhi et al., 2000; Taylor and Bronks, 1994) may be more
useful for determining the physiological basis for changes in mus-
cle activity. Additionally, some studies only report changes within
a single muscle group (Bouissou et al., 1989; Hanon et al., 1998;
Nagamachi et al., 2000), whereas others describe simultaneous
changes in multiple muscles (Borrani et al., 2001; Hanon et al,,
2005; Paavolainen et al., 1999) during running.

For differences or changes in EMG parameters to be meaningful,
the EMG signal must demonstrate sufficient consistency during
non-fatiguing conditions such that any changes in the signal may
be interpreted as real findings. The intra-class correlation coeffi-
cient (ICC) is typically used as a measure of relative consistency
(reliability) and the standard error of measurement (SEM) as a
measure of absolute consistency (precision) (Weir, 2005). A num-
ber of factors may affect the reliability and precision of the EMG
signal within a single running session. These include changes in
muscle temperature (Bigland-Ritchie et al., 1981), alterations in
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muscle recruitment patterns (Borrani et al., 2001), and local
metabolic state (Bouissou et al., 1989). Therefore, it is necessary
for subjects to reach a physiologic (Poole et al., 1991) and thermo-
regulatory (Borrani et al., 2001; Saltin et al., 1968) steady-state
when measuring the consistency of EMG parameters. Additionally,
optimization of electrode-skin interactions through proper prepa-
ration and standardization of electrode placement sites (DeLuca,
1997; Zipp, 1982) are necessary for reducing error in EMG signals
to optimize reliability and precision.

It cannot be assumed that a given EMG parameter has the same
degree of reliability and precision for all muscles, considering some
muscles act as primary movers during running (Hanon et al., 2005;
Kyrolainen et al., 2005), whereas others function as stabilizers
(Cromwell et al., 2001; Saunders et al., 2004). Furthermore, the
leg muscles must support the body’s weight, whereas the torso
and arm muscles are non-weight bearing, yet actively contribute
to the running motion (Hinrichs, 1990; Saunders et al., 2004). Such
differences necessitate different muscle activation patterns which
may result in variation in the reliability and precision of EMG
parameters between different muscles.

Despite the many published papers describing changes in EMG
parameters during running, there is very little reported on the reli-
ability and precision of many of these variables (Nagamachi et al.,
2000). Therefore, the purpose of this study was to quantify the reli-
ability and precision of commonly used EMG parameters in mus-
cles of the legs, torso, and arms during treadmill running. This
information may be valuable for better interpreting data from
studies which focus on within-subject changes in EMG parameters
during running.

2. Methods
2.1. Subjects

Fifteen competitive male distance runners (age: 23.0+4.6
years, mass: 67.4 + 7.9 kg, height: 180.1 + 4.6 cm) from local run-
ning clubs and collegiate teams served as subjects for this study.
Subjects were required to be injury-free and performing their nor-
mal training routines for at least three months prior to enrolling in
the study. Prior to testing, all subjects signed an informed consent
approved by the university’s institutional review board.

2.2. Testing procedures

Subjects visited the laboratory on two different occasions sepa-
rated by one week. During the first session, subjects completed
medical history and running injury questionnaires to determine
eligibility for the study. Subjects with neuromuscular, metabolic,
or cardiovascular disease or any other conditions which could alter
EMG data and limit running performance were excluded from par-
ticipation in the study. Qualified subjects underwent a maximal
oxygen uptake (VO,max) test while running on a treadmill wear-
ing a telemetric metabolic system (K4b? COSMED USA Inc, Chi-
cago, IL) and heart rate monitor (Polar USA, Lake Success, NY).
The VO,max test was used to quantify relative metabolic intensity
for the second testing session and also obtain descriptive data
regarding subjects’ fitness levels. During the second testing ses-
sion, subjects ran on a treadmill while EMG signals were recorded
from thirteen different muscles using a telemetric EMG system
(Noraxon Telemyo System, Noraxon USA Inc., Scottsdale, AZ).

For the first testing session, subjects were allowed to perform a
10 min warm-up of self-perceived easy running on a treadmill.
Subjects then were equipped with the metabolic system and heart
rate monitor and performed an incremental exercise test using a
modified Astrand protocol (Ferguson et al., 1998). Test pace was

determined by using values from a performance index (Daniels,
1998) based on recent racing performances. Subjects performed a
five minute warm-up at a self-selected pace. The treadmill velocity
was then increased to the test speed, which subjects maintained
for three minutes. The treadmill incline was then increased 2.5 de-
grees every two minutes. Subjects were asked to run until voli-
tional exhaustion while metabolic data were collected.

For the second testing session, EMG data were collected from
thirteen muscles. These included leg (vastus lateralis, semimembr-
anosus, gluteus maximus and rectus femoris), torso (erector spinae
group, rectus abdominus, external oblique), shoulder/arm (trape-
zius, latissimus dorsi, anterior deltoid, middle deltoid, posterior
deltoid, brachioradialis) muscles. Electrode placement sites were
identified by using the methods of DeLuca (1997) and Zipp
(1982), whereby the electrodes were placed parallel to the muscle
fibers between the myotendinous junction and site of innervation.

All electrode sites were shaved, abraded, and washed with an
alcohol wipe. Pre-gelled, self-adhesive bipolar silver-silver chloride
electrodes (Medicotest, Inc., Rolling Meadows, IL) were then placed
on each site with an interelectrode distance of 20 mm. Electrodes
were secured using flexible adhesive tape. The electrodes were
connected to the telemetric EMG unit. Leads were bundled to-
gether to minimize cable movement. A triaxial accelerometer mod-
ule (Model 2422-025, Silicon Designs, Inc., Issaquah, WA) was
adhered to the skin over medial surface of the superior portion of
the tibia to later determine the time point of impact for each stride.
Subjects were equipped with a telemetric heart rate monitor and
were then asked to start running on the treadmill at a self-de-
scribed easy pace. Treadmill speed was gradually increased within
five minutes until subjects reached 70% of maximal heart rate
reached on the VO,max test. Upon reaching a consistent pace
and heart rate, subjects ran for ten minutes.

2.3. Data collection

Accelerometry data and EMG data were collected at a sampling
rate of 1200 Hz for twenty seconds at the start of every minute.
EMG signals collected from silver-silver chloride surface electrodes
passed through a single-ended amplifier with a gain of 500 to two
eight channel FM transmitters. The receiver unit obtained the tele-
metric signals from the transmitters, where then were amplified
and hardware filtered using a 15-500 Hz band-pass Butterworth
filter, using a common mode rejection ratio of 130 db. Signals from
the receiver were converted from analog to digital data via an ana-
log-to-digital board (DT3010/32, Data Translation, Inc., Marlboro,
MA). The digital data were collected and stored with Peak Motus
8.4 software (Peak Performance Technologies, Inc., Englewood,
CO).

2.4. Data reduction and processing

All data reduction and processing was done using a using a cus-
tomized Matlab (Mathworks Inc., Natick, MA) program.

Oxygen uptake data was smoothed using a 30 s moving average
and normalized to total body mass. The highest value of this aver-
aged data was designated as VO,max.

Data from the ninth and tenth minutes of the run were used for
reliability and precision calculations. Peaks in accelerometry data
were used to determine the start and end points of each stride cy-
cle. These time points were used to define a time window for each
stride cycle and calculate stride rate. Twenty-five consecutive
stride cycles were defined for each minute. For each stride cycle,
four EMG parameters were calculated for the entire duration of
the stride cycle (from impact to impact). The mean data from the
25 consecutive stride cycles were calculated for each. All EMG data
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were software filtered using a band-pass filter with cutoff frequen-
cies of 30 and 500 Hz (Ament et al., 1996; Redfern et al., 1993).

To compute iEMG, the absolute value of the band-pass filtered
EMG signal was calculated to rectify the data. A low-pass Butter-
worth filter with a frequency cutoff of 20 Hz was applied to smooth
the rectified data to obtain the linear envelope. The area under the
curve was then calculated using trapezoidal integration to deter-
mine the iEMG for each stride cycle.

Root Mean Square was calculated by squaring the values of the
band-pass filtered EMG signal. The mean of these squared values
was then computed. The square root of this mean was then calcu-
lated to determine the RMS for each stride cycle.

Integrated EMG and RMS data were normalized to the time re-
quired to travel one meter. For each stride cycle, stride rate was di-
vided by treadmill speed to compute the strides per meter. For
each stride cycle, the iEMG and RMS were multiplied by the strides
per meter to compute iEMG and RMS per meter.

Maximum M-wave was defined as the maximum magnitude of
the absolute value of the band-pass filtered time-domain EMG
signal.

Median Power Frequency was calculated by first applying a fast
Fourier transformation to the filtered time-domain signal into fre-
quency domain to obtain the power density spectrum (P). The
median frequency of this power density spectrum was then calcu-
lated as the frequency (f) at which the integral of the left side of the
spectrum was equal to that of the right side (Solomonow et al.,
1990).

2.5. Statistical analysis

All statistical procedures were done in SPSS v14.0. Means, stan-
dard deviations (SD), intra-class correlation coefficients, and abso-
lute and normalized standard errors of measurement (SEM), were
calculated for each parameter for each muscle. Intra-class correla-
tion coefficients (ICC) were calculated using the (2,1) model (Weir,
2005). The absolute SEM was estimated by subtracting the ICC va-
lue from one, taking the square root of this value, and multiplying
by the SD (Weir, 2005). The normalized SEM was calculated by
dividing the absolute SEM by the mean for a given parameter for
each muscle to obtain a percent of the mean.

Intra-class correlation coefficients greater than 0.80 were con-
sidered to be good for research (Sleivert and Wenger, 1994) and
clinical (Currier, 1984) applications. Overall means of ICC values
and normalized precision values were calculated across all param-
eters for each muscle, and across all muscles for each parameter.

Table 1

3. Results

The mean VO,max for subjects was 71.5 £ 6.3 mL O, min’kg and
maximal heart was 188.2 + 10.8 beatsmin~. For the second test,
the mean treadmill velocity was 3.50 #0.35ms ™! and the mean
heart rate was 136.8 + 13.6 beatsmin~! (72.7% of maximum).

Data for each EMG parameter for each muscle are displayed in
Tables 1-4. Examples of band-pass filtered EMG data and linear
envelope data are found in Figs. 1-3.

Seven muscles (semimembranosus, erector spinae, latissimus
dorsi, rectus abdominus, external oblique, anterior deltoid, and
brachioradialis) had ICC>0.80 for each of the four parameters
studied, thus meeting the criteria for very good reliability. The
latissimus dorsi and brachioradialis were the only two muscles
with normalized precision <10% for all parameters. The gluteus
maximus, rectus femoris, middle deltoid, and trapezius were the
least precise muscles of the time-domain parameters, all with
absolute SEM >25%.

The MPF was the most reliable and precise parameter mea-
sured, as all but one muscle (vastus lateralis) had an ICC > 0.80
and normalized precision <6% for this parameter. Ten muscles
had an absolute SEM <3.0 Hz, and the remaining three muscles
were <7.0 Hz.

The iEMG was generally reliable, with only three muscles (vas-
tus lateralis, middle deltoid, trapezius) having ICC < 0.80. Reliabil-
ity and precision of iEMG was superior to that of RMS for all
muscles except the erector spinae, latissimus dorsi, and anterior
deltoid. It should be noted that these three muscles all had
ICC>0.90 for each parameter. Additionally, six muscles had an
RMS ICC < 0.80. Neither of these parameters were as precise as
MPF, with only five muscles <10% for iEMG and only two muscles
<10% for RMS.

Maximum M-wave had similar overall reliability and precision
to iEMG, with only three muscles (rectus femoris, middle deltoid,
trapezius) having ICC < 0.80, but also only three muscles with nor-
malized precision <10%.

4. Discussion
4.1. Summary of key findings

The results of this study reveal that multiple EMG parameters
are reliable and precise in leg, torso, and arm muscles during run-
ning. It is clear that many muscles display excellent reliability
across all parameters, with seven of the thirteen muscles having

Integrated EMG data. Mean and standard deviations for iEMG from the ninth and tenth minute of the run are presented. The ICC, absolute SEM, and relative SEM are presented for

each muscle, as well as the overall mean and SD for all muscles.

Muscle Minute 9 Minute 10 ICC SEM (absolute) SEM (normalized, %)
Mean SD Mean SD
Vastus lateralis 156.14 72.46 180.84 79.97 0.664 46.337 27.502
Semimembranosus 93.71 80.35 88.35 71.35 0.989 8.600 9.448
Gluteus maximus 52.69 39.53 53.29 34.70 0.814 17.055 32.188
Rectus femoris 119.93 66.68 140.11 89.56 0.819 38.126 29.324
Erector spinae 100.50 68.44 104.53 80.56 0.968 14.460 14.105
Latissimus dorsi 82.87 23.60 83.08 26.96 0.974 4319 5.205
Rectus abdominus 69.99 59.35 66.99 58.57 0.986 6.972 10.179
External oblique 63.34 23.90 64.26 28.66 0.971 4.881 7.651
Anterior deltoid 41.89 2343 47.18 25.23 0.922 7.050 15.830
Middle deltoid 66.97 30.30 63.29 23.75 0.483 21.782 33.445
Posterior deltoid 108.40 4434 106.47 50.26 0.977 7.569 7.045
Trapezius 119.04 56.01 107.67 56.84 0.681 32.117 28.333
Brachioradialis 92.92 39.19 92.02 40.08 0.978 5914 6.396
Overall mean 0.864 16.553 17.435
Overall SD 0.163 14.000 10.957
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Table 2
Root mean square EMG data. Mean and standard deviations for RMS from the ninth and tenth minute of the run are presented. The ICC, absolute SEM, and relative SEM are
presented for each muscle, as well as the overall mean and SD for all muscles.

Muscle Minute 9 Minute 10 ICC SEM (absolute) SEM (normalized, %)
Mean SD Mean SD
Vastus lateralis 0.353 0.160 0.369 0.161 0.394 0.126 34.776
Semimembranosus 0.184 0.163 0.177 0.144 0.987 0.018 10.145
Gluteus maximus 0.112 0.097 0.108 0.074 0.773 0.046 42.028
Rectus femoris 0.238 0.134 0.261 0.166 0.794 0.075 30.185
Erector spinae 0.225 0.162 0.232 0.180 0.977 0.027 11.950
Latissimus dorsi 0.157 0.043 0.156 0.047 0.985 0.006 3.698
Rectus abdominus 0.135 0.111 0.129 0.109 0.982 0.015 11.315
External oblique 0.112 0.037 0.115 0.049 0.944 0.012 10.221
Anterior deltoid 0.092 0.051 0.101 0.052 0.946 0.012 12.464
Middle deltoid 0.145 0.082 0.125 0.050 0.324 0.067 49.634
Posterior deltoid 0.221 0.104 0.195 0.062 0.555 0.069 33.312
Trapezius 0.285 0.129 0.248 0.132 0.627 0.081 30.354
Brachioradialis 0.206 0.099 0.209 0.099 0.964 0.019 9.058
Overall mean 0.789 0.044 22.242
Overall SD 0.239 0.037 14.944
Table 3

Maximum M-wave data. Mean and standard deviations for maximum M-wave from the ninth and tenth minute of the run are presented. The ICC, absolute SEM, and relative SEM
are presented for each muscle, as well as the overall mean and SD for all muscles.

Muscle Minute 9 Minute 10 ICC SEM (absolute, mV) SEM (normalized, %)
Mean (mV) SD Mean (mV) SD
Vastus lateralis 1.94 0.92 2.08 0.93 0.817 0.395 19.671
Semimembranosus 0.90 0.64 0.90 0.68 0.983 0.088 9.738
Gluteus maximus 0.52 0.40 0.47 0.26 0.868 0.146 29.272
Rectus femoris 1.20 0.57 141 0.81 0.776 0.385 29.432
Erector spinae 1.18 1.02 1.18 0.98 0.990 0.100 8.527
Latissimus dorsi 0.75 0.26 0.76 0.28 0.941 0.068 8.961
Rectus abdominus 0.56 0.49 0.53 0.47 0.982 0.066 12.245
External oblique 0.48 0.18 0.51 0.25 0.903 0.078 15.733
Anterior deltoid 0.46 0.32 0.49 0.30 0.967 0.057 11.952
Middle deltoid 0.81 0.48 0.74 0.41 0.434 0.359 46.285
Posterior deltoid 1.12 0.47 1.09 0.50 0.973 0.082 7.421
Trapezius 1.55 0.66 1.40 0.70 0.582 0.451 30.590
Brachioradialis 1.15 0.58 1.16 0.64 0.970 0.110 9.586
Overall mean 0.861 0.184 18.416
Overall SD 0.173 0.152 11.952
Table 4

Median power frequency data. Mean and standard deviations for MPF from the ninth and tenth minute of the run are presented. The ICC, absolute SEM, and relative SEM are
presented for each muscle, as well as the overall mean and SD for all muscles.

Muscle Minute 9 Minute 10 ICC SEM (absolute, Hz) SEM (normalized, %)
Mean (Hz) SD Mean (Hz) SD
Vastus lateralis 63.69 11.82 60.30 9.07 0.678 6.703 10.812
Semimembranosus 86.20 23.19 86.44 22.74 0.990 2.306 2.672
Gluteus maximus 49.91 6.02 49.81 6.77 0.850 2.621 5.257
Rectus femoris 67.80 12.01 56.31 12.41 0.967 2.269 3.977
Erector spinae 73.34 15.99 73.81 17.33 0.948 3.937 5.351
Latissimus dorsi 77.48 12.30 77.61 13.05 0.974 2.105 2.714
Rectus abdominus 49.02 11.03 48.25 9.49 0.972 1.850 3.805
External oblique 60.23 11.65 60.17 12.51 0.980 1.776 2.951
Anterior deltoid 66.77 10.48 66.29 11.16 0.963 2.145 3.225
Middle deltoid 74.19 14.27 76.23 14.77 0.907 4.497 5.979
Posterior deltoid 75.78 14.81 75.51 14.48 0.964 2.810 3.715
Trapezius 79.59 10.99 79.97 11.20 0.952 2.450 3.072
Brachioradialis 78.89 15.52 77.07 14.61 0.971 2.654 3.404
Overall mean 0.932 2.933 4.379
Overall SD 0.085 1377 2.204

ICC>0.90 for all four parameters, far exceeding the threshold of less parameters meeting the criteria for very good reliability. The
0.80 for very good reliability. The vastus lateralis, middle deltoid, only frequency domain parameter, MPF, was the most reliable
and trapezius were the least reliable muscles overall, with two or and precise of all parameters examined.
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Fig. 1. Sample EMG data from a leg muscle. The top figure represents band-pass filtered EMG data and the bottom figure represents iEMG data from the vastus lateralis

muscle. The dotted vertical lines represent the start of each successive stride.

Multiple variables are often interpreted together to determine
the physiological nature of fatigue (Mizarhi et al., 2000; Taylor
and Bronks, 1994). However, it appears there is not a solid relation-
ship between the reliability and precision of one parameter with
that of any other parameter. For instance, the middle deltoid was
not reliable for iEMG, RMS, M-wave (ICC=0.483, 0.324, and
0.434, respectively) but was reliable for MPF (ICC = 0.907). Further,
it cannot be assumed that if a given parameter is considered reli-
able for two different muscles, it will also be similarly precise for
both. For instance, the latissimus dorsi and gluteus maximus both
are reliable for iEMG (ICC > 0.80). However, the latissimus dorsi has
a normalized precision of 5.2% for this variable, whereas the glu-
teus maximus has a normalized precision of 32.2%. Therefore, it
should not be assumed that if one parameter for a given muscle
is reliable or precise, all parameters will be. This emphasizes the
importance of knowing reliability and precision when interpreting
changes in multiple variables together. If any of these multiple
variables do not demonstrate sufficient consistency, investigators
may not be able to make accurate conclusions about the data.

It cannot be assumed that two muscles within a region or sim-
ilar function will be equally reliable. This is best observed by com-
paring the middle deltoid to the anterior deltoid. While both are in
the same region of the body and are partly responsible for shoulder
movement during running, the anterior deltoid had excellent reli-
ability for all parameters (ICC > 0.90), whereas the middle deltoid
did not, as discussed previously. A similar scenario exists between
the hip extensors studied, with the semimembranosus being con-
siderably more reliable and precise than the gluteus maximus for
all parameters. The same holds true for the knee extensors studied,

namely with the rectus femoris being more reliable in iEMG and
MPF (ICC = 0.819 and 0.967, respectively) when the vastus lateralis
was not (ICC = 0.664 and 0.678, respectively). The discrepancy be-
tween these past two examples may be related to differences in
consistency of muscle activation patterns between muscles cross-
ing one joint (gluteus maximus and vastus lateralis) versus those
which cross two joints (semimembranosus and rectus femoris)
(Prilutsky et al., 1998).

It is interesting to note that the vastus lateralis was among the
least reliable and precise of the thirteen muscles tested for most
parameters. Electromyographic parameters of this muscle have
been used quite frequently in studying fatigue during running (Ha-
non et al., 2005; Taylor and Bronks, 1994), as well as oxygen uptake
kinetics (Borrani et al., 2001). It is not immediately clear why this
specific muscle was found not to be as reliable or precise as other
muscles studied in this investigation and this poor consistency ap-
pears consistent between subjects. One possible explanation is that
there is considerable variation in motor control of the entire knee
joint, with the vastus lateralis and medialis activated to different
degrees with each stride to stabilize the patella and maintain con-
sistent varus/valgus angles. Though this muscle has been observed
to fatigue in previous studies, it is unlikely fatigue was a factor in
this study, due to the relatively easy intensity of the running, the
training background of the subjects, and the short period between
data collection points.

Of the four parameters considered, iEMG and RMS may be con-
sidered the most similar in nature, with both being used to mea-
sure the overall amplitude and duration of the M-wave.
Generally, only one of these two parameters is reported for a given



e6 J.M. Smoliga et al./Journal of Electromyography and Kinesiology 20 (2010) e1-e9

mv
(-]

15 20

Time (s)

06
0.4

02

15 ] ] 20

Time (s)

Fig. 2. Sample EMG data from a torso muscle. The top figure represents band-pass filtered EMG data and the bottom figure represents iEMG data from the rectus abdominus

muscle. The dotted vertical lines represent the start of each successive stride.

study. This data demonstrated that iEMG is more reliable and pre-
cise in ten of the thirteen muscles studied, and it is still very reli-
able and precise in the remaining three muscles during running.
Given this information, it may be recommended that iEMG is pre-
ferred over RMS when studying running.

4.2. Methodological considerations

The ICC (2,1) model used in this study accounts for systematic
and random error and allows these findings to be utilized in
EMG studies with similar methodology (Weir, 2005). Good reliabil-
ity indicates that individual subjects demonstrate relative consis-
tency across multiple trials within a single session, such that
data from one muscle or subject can be distinguished from that
of another (Weir, 2005). From this, muscles demonstrating good
reliability may be used for research or clinical applications where
between-muscle or between-subject differences are key. Muscles
which did not demonstrate good reliability may still be used to
study running, however a considerably greater number of subjects
is required to reduce the risk of Type Il error (Weir, 2005). It should
be noted that subjects in this study were well-trained athletes with
relatively low body fat. Therefore, EMG signals from these individ-
uals would likely demonstrate greater reliability and precision
than those recorded from non-athletes.

A high degree of precision may be interpreted such that data are
consistent from trial to trial within a given muscle for an individ-
ual. Therefore, muscles demonstrating good precision may be used
for applications where within-subject changes are the focus. With

sufficient precision, changes of an EMG parameter may be consid-
ered real, rather than an artifact of variability. In this study, nor-
malized SEM was calculated to provide a point of comparison of
the precision between multiple muscles, as mean values often dif-
fered considerably between muscles. This may be useful for deter-
mining which muscles are most ideal to use for future applications.
It is important to note that all of these findings are valid for intra-
session consistency but do not describe intersession consistency,
which is beyond the scope of this study.

There is considerable variability in EMG parameters for some
muscles, as evidenced by large standard deviations of the mean.
This reflects inter-subject variation, which may be due to differ-
ences in body composition (Nordander et al., 2003) and actual dif-
ferences in motor patterns between individuals. Inter- and intra-
subject variation is one reason why time-domain EMG variables
are often normalized to static maximal voluntary contraction (Ha-
non et al., 1998; Kyrolainen et al., 2005). However, this is likely not
appropriate for running, as it is a dynamic activity whereby muscle
length, and therefore shape, is regularly changing. This affects EMG
through soft tissue filtering, such that the average distance be-
tween the electrode site and active motor units is cyclically chang-
ing with dynamic activity (Shankar et al., 1989), such as the
running stride. The concept of normalizing iEMG to stride duration
was originally recommended by Hanon et al. (2005). This normal-
ization prevents changes in stride duration from spuriously inter-
fering with time-domain EMG and RMS data (Hanon et al., 2005).
This is more functionally specific to running than normalizing to
an arbitrary time period of muscle contraction at a static joint an-
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Fig. 3. Sample EMG data from an arm muscle. The top figure represents band-pass filtered EMG data and the bottom figure represents iEMG data from the posterior deltoid

muscle. The dotted vertical lines represent the start of each successive stride.

gle, as in the maximal voluntary contraction method. These data
demonstrate this method of normalization produces reliable and
precise data for many muscles.

Many studies examining fatigue focus upon within-subject
changes in EMG parameters occurring during a relatively short
time period (Borrani et al., 2001; Hanon et al., 2005). For this rea-
son, it was important to use data from two nearby time points,
which is why the ninth and tenth minutes of the run were used.
Heart rate data from the second test strongly suggests subjects
were not running at a high relative intensity and therefore were
likely in a physiological steady-state during these data collection
periods (Poole et al., 1991). It would be expected that these two
time points would yield very similar data if there was not consid-
erable error within the system. This error may include noise from
movement between the electrodes and the skin, as well as move-
ment in the leads (DeLuca, 1985; Enoka, 2002). In this investiga-
tion, this error likely varied minimally between electrode sites, as
the same procedures were used for each to securely adhere the
electrodes to the skin and minimize movement of the leads.

It should be noted that the low-frequency cutoff of this band-
pass filter was 30 Hz, a procedure which has been reported in pre-
vious running studies (Ament et al., 1996). The investigators found
low-frequency noise to be present in the raw signal. This was
attributable to the movement of the leads during running. While
measures were taken to reduce this movement during the subject
set up, it could not be completely eliminated. Additionally, electro-
cardiogram artifact was observed in many of the upper body mus-
cles, and most of this is also located below 30 Hz (Redfern et al.,
1993). Because nearly the entire EMG signal is above this fre-

quency (Basmajian and DeLuca, 1985), this method of filtering pro-
vided for a cleaner signal with minimal data loss (Redfern et al.,
1993).

When examining the biomechanical differences between tread-
mill and overground running, conflicting results have been re-
ported, however very little of this has focused upon EMG
specifically (Wank et al., 1998). Studies investigating EMG differ-
ences between treadmill and overground activities have reported
minimal differences for both running (Wank et al., 1998) and walk-
ing (Lee and Hidler, 2008; Murray et al., 1985; Nymark et al., 2005)
under both conditions. Therefore, the results from this study can
most probably be extrapolated beyond treadmill running to over-
ground running also.

4.3. Significance and applications

This information is of significance to researchers studying run-
ning performance and injuries in athletes. For instance, acute inter-
ventions, such as intentional changes in stride length which alter
the EMG signal may be studied. Future studies examining EMG
in relation to other variables during running, such as oxygen up-
take kinetics and changes in biomechanical variables should use
more than one muscle and should focus on muscles with accept-
able reliability. The roles of torso and upper body muscles during
running have received considerable attention anecdotally and
some scientific research has been conducted in this area. For future
studies to take place to better describe their role during running, it
is necessary to have reliability and precision values for these EMG
parameters.
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An understanding of the consistency of EMG parameters may
also be of value to clinicians. Clinicians may use EMG to determine
muscle imbalances about a given joint or bilaterally asymmetries
of a given muscle and evaluate motor control (Zwarts and Steg-
eman, 2003). If muscles or EMG parameters which are not reliable
are used, these measurements may be erroneous and may yield
inaccurate clinical decisions. By choosing EMG parameters which
are reliable and precise for a given muscle, clinicians can make
more accurate decisions when utilizing EMG for diagnostics.

In conclusion, these data provide a good framework for interpret-
ing the significance of changes in EMG data. These results demon-
strate reliability of one EMG parameter does not necessarily mean
that another EMG parameter for the same muscle is reliable. Addi-
tionally, there is considerable variation in reliability among muscles.
Lastly, these results will allow for appropriate interpretation of
changes in EMG parameters of these muscles during running.
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